Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(24): 10392-10399, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34894697

RESUMO

Color centers in diamond are widely explored as qubits in quantum technologies. However, challenges remain in the effective and efficient integration of these diamond-hosted qubits in device heterostructures. Here, nanoscale-thick uniform diamond membranes are synthesized via "smart-cut" and isotopically (12C) purified overgrowth. These membranes have tunable thicknesses (demonstrated 50 to 250 nm), are deterministically transferable, have bilaterally atomically flat surfaces (Rq ≤ 0.3 nm), and bulk-diamond-like crystallinity. Color centers are synthesized via both implantation and in situ overgrowth incorporation. Within 110-nm-thick membranes, individual germanium-vacancy (GeV-) centers exhibit stable photoluminescence at 5.4 K and average optical transition line widths as low as 125 MHz. The room temperature spin coherence of individual nitrogen-vacancy (NV-) centers shows Ramsey spin dephasing times (T2*) and Hahn echo times (T2) as long as 150 and 400 µs, respectively. This platform enables the straightforward integration of diamond membranes that host coherent color centers into quantum technologies.


Assuntos
Teoria Quântica , Nitrogênio/química
2.
Nano Lett ; 21(12): 4966-4972, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34100623

RESUMO

Magnetic microscopy that combines nanoscale spatial resolution with picosecond scale temporal resolution uniquely enables direct observation of the spatiotemporal magnetic phenomena that are relevant to future high-speed, high-density magnetic storage and logic technologies. Magnetic microscopes that combine these metrics has been limited to facility-level instruments. To address this gap in lab-accessible spatiotemporal imaging, we develop a time-resolved near-field magnetic microscope based on magnetothermal interactions. We demonstrate both magnetization and current density imaging modalities, each with spatial resolution that far surpasses the optical diffraction limit. In addition, we study the near-field and time-resolved characteristics of our signal and find that our instrument possesses a spatial resolution on the scale of 100 nm and a temporal resolution below 100 ps. Our results demonstrate an accessible and comparatively low-cost approach to nanoscale spatiotemporal magnetic microscopy in a table-top form to aid the science and technology of dynamic magnetic devices with complex spin textures.


Assuntos
Microscopia de Varredura por Sonda , Nanotecnologia , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...